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Exponential distributions in a mechanical model for earthquakes
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We study statistical distributions in a mechanical model for an earthquake fault introduced by Burridge and
Knopoff @R. Burridge and L. Knopoff, Bull. Seismol. Soc. Am.57, 341~1967!#. Our investigations on the size
~moment!, time duration, and number of blocks involved in an event show that exponential distributions are
found in a given range of the parameter space. This occurs when the two kinds of springs present in the model
have the same, or approximately the same, value for the elastic constants. Exponential distributions were also
seen recently in an experimental system to model earthquakelike dynamics and in faults of the earth’s crust.
@S1063-651X~96!00612-5#

PACS number~s!: 05.40.1j, 64.60.Ht, 91.30.Bi

I. INTRODUCTION

Systems that present stick-slip dynamics and scaling in-
variance have attracted considerable attention recently@1,2#.
This was triggered, in part, by a seminal paper of Bak, Tang,
and Wiesenfeld, which showed that a class of systems pre-
senting avalanches or earthquakelike dynamics can naturally
attain a critical state characterized by power-law distribu-
tions @1#. They denoted this phenomenon self-organized
criticality.

Recently, two experimental studies in a continuous elastic
system have been performed to model the stick-slip dynam-
ics observed in earthquakelike phenomena. In one of them
@3#, a glass rod is pulled on top of a latex membrane. In this
system the slipping events appear as detachment waves and a
wide distribution of event sizes was observed. However, ro-
bust scaling behavior was not seen.

In the other system, studied by Rubio and Galeano@4#, the
elastic medium consists of a transparent gel sheared between
two coaxial circular cylinders. The inner cylinder is rotated
at very low angular speed. Thus this system closely re-
sembles the physics of a spring-block model@5# with peri-
odic boundary conditions. Due to the friction between the gel
and the cylinders, stick-slip behavior is seen in the form of
detachment waves. Rubio and Galeano were able to identify
four regimes in this system, by varying the gel’s rigidity, the
rotor angular speed, and the friction properties of the gel
with the inner cylinder. The regimes identified were:~a! uni-
form slipping of the gel with respect to the rotor;~b! relax-
ation events, in which a big event starts to quickly propagate
through the whole cell in an almost periodic way;~c! nearly
periodic regimes of a solitonlike character, and~d! regimes

involving events with many sizes and time scales. In the
latter case, they found exponential statistical distributions in
amplitude, duration, and separation time between events.

With respect to theoretical and numerical studies, one of
the systems used to model the dynamics of earthquakes has
been the model introduced by Burridge and Knopoff~BK! in
1967, and investigated extensively in recent publications
@6,7#. Although most of the studies on the Burridge-Knopoff
model have been concentrated on the parameter region where
a partial power law~partial here means of limited size! of the
distributions of event sizes is found, this regime in fact has
not been seen yet in experimental studies of a homogeneous
system. The three first regimes~a!, ~b!, and ~c! found by
Rubio and Galeano have been observed in numerical studies
of the BK model. No reports so far exist of exponential dis-
tributions in the BK model.

In this paper we show that exponential distributions are
also seen in the BK model. This kind of distribution is ob-
served when the two kinds of springs in the model have the
same, or approximately the same, value for the elastic con-
stants. They are present in quantities such as the time dura-
tion, number of blocks displaced, and total displacement
~moment! of the blocks involved in an event. The BK model,
with all the springs having the same elastic constant, models
a system in which the coupling between neighboring blocks
has the same magnitude as the coupling between the blocks
and the plate to which they are attached. Therefore, this is a
model for a system that is homogeneous. It does, in fact,
reproduce the results found in controlled experimental stud-
ies @4# of a homogeneous system that presents stick-skip dy-
namics.

With respect to the earth’s crust, exponential distributions
were observed at least in two studies. Cowieet al. @8# found
that the statistics of the lengths, scarp heights, and spacing of
normal faults on the flanks of a given midocean ridge~the
East Pacific Rise, between 19°S and 21°N! obey exponential
distributions. The same kind of distribution was observed by
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Brooks and Allmendinger@9# in the study of the fault spatial
distribution in El Teniente Mine, in Central Chile. Conse-
quently, not only fractal distributions~e.g., the Gutenberg-
Richter law! have been seen in studies of the earth’s crust.
Thus, as in the BK model, different distributions of fault
properties on the earth can be found, depending on the fea-
tures of the considered region.

The paper is organized as follows: in Sec. II we describe
the model; in the third section we study the statistical distri-
butions and the different regimes that appear when the spring
constants are varied; the last section is dedicated to the con-
clusions.

II. BURRIDGE-KNOPOFF MODEL

The homogeneous version of the Burridge and Knopoff
model is shown in Fig. 1. It consists of a one dimensional
array ofN blocks, each of massm, coupled by springs of
constantkc to one another, and by a spring of constantkp to
a rigid pulling bar that moves at constant velocityV. In equi-
librium, when all the springs are unstretched, adjacent blocks
are separated by a distancea. The blocks rest upon a station-
ary surface, which provides a frictional force that impedes
the motion of the blocks. In the version considered in Ref.
@6# the friction is a decreasing function of the velocity, the
same for all blocks. The equation of motion for thej th mass
when it is moving is

mẌj5kc~Xj1122Xj1Xj21!2kp~Xj2Vt!2F~Ẋj /Vf !,
~1!

whereXj denotes the displacement of the block measured
with respect to the position where the sum of the elastic
forces on it is zero. The last term in Eq.~1! represents the
nonlinear and velocity dependent frictional force, which is
given by

F~Ẋj /Vf !5H F0 /~11Ẋj /Vf !, if Ẋj.0

2`, if Ẋj,0,

whereVf is the characteristic velocity for the friction. Here,
we do not allow backward motions and the friction force gets
arbitrarily high to avoid it. This is just for computational
convenience, and this does not change the main results pre-
sented here.

As shown in Ref.@7#, this model has five independent
velocity scales. Two appear explicitly in Eq.~1!: ~i! the pull-

ing velocity V and ~ii ! the characteristic velocityVf . Two
more can be defined in terms of the spring constants, the
mass and F0: ~iii ! V05F0 /Amkp and ~iv!
Vl5(F0 /kp)Akc /m. Here, V0 and Vl correspond to the
maximum velocities of a single block held by a spring of
constantkp andkc , respectively, when it has been displaced
by the characteristic distanceF0 /kp in the absence of fric-
tion. The fifth velocity is the sound velocityVs5aAkc /m,
which depends on the equilibrium spacinga of the blocks
and does not appear explicitly in Eq.~1!. Depending on the
relative sizes of these velocities, we would expect a different
behavior for the system.

Following Ref. @6#, we introduce different dimensionless
variables

Uj5
kp
F0

Xj , t5~m/kp!
1/2t, ~2!

so that Eq.~1! can be written in dimensionless form

Ü j5n l
2~Uj1122Uj1Uj21!2Uj1nt2F~U̇ j /n f !, ~3!

where

F~U̇ j /n f !5H 1/~11U̇ j /n f !, if U̇ j.0

2`, if U̇ j,0.

Now, n l5Akc /kp,n5V/V0, andn f5Vf /V0. Dots here rep-
resent derivatives with respect to the scaled timet. The
sound velocity becomesns5a8Akc /kp5a8n l , where
a8[akp /kc . Without losing generality we can take the di-
mensionless lengtha8[1. Thus the sound velocityns be-
comes identical ton l . The five velocitiesV,Vf ,Vl ,Vs , and
V0 have been transformed, respectively, into
n,n f ,n l ,ns[n l , and n0[1. Consequently, the model has
three relevant parameters,n,n f , and n l[ns , which com-
pletely determine the behavior of the system. In the case of
an open boundary condition, which is the one we consider
here, we haveU05U1 andUN115UN .

For fixedn l andn ~largen l and smalln), a transition was
reported in Ref.@7# when two velocities cross, namely, when
n f5n0[1. For n f5` one finds that the motion of the sys-
tem is continuous. No block ever stops. Asn f decreases, one
sees small regions of stationary blocks. Whenn f becomes
less than 1 these stationary~event-free! regions begin to per-
colate across the entire system. The motion of the fault in
this smalln f region now occurs in abrupt large events.

Here we report another transition, which occurs when the
velocity n l is varied for fixed values ofn andn f . We find
that for n l less than a given value the event sizes and event
durations obey exponential distributions. Another value is
observed forn l , above which the distributions present partial
power laws, namely, events that have a size smaller than a
critical value have power-law distributions, and events that
are larger than this value obey different statistics. In the in-
termediate regime forn l , the distributions are neither power
laws nor exponentials. Asn l gets close to zero, the exponen-
tial distributions disappear, since in that limit the blocks are
disconnected, and only one-block events are observed. Evi-

FIG. 1. System studied, which consists of a chain ofN blocks
connected by linear springs of constantkc . The blocks are on a flat
surface and each block is connected to a bar through a spring of
constantkp . The bar is pulled with constant velocityV. Between
the surface and the blocks there is a velocity weakening friction
forceF.
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dence of a different behavior whenn l is varied was found in
Ref. @10#. However, no statistical distributions were calcu-
lated in that paper.

In the numerical simulations of this letter we have gener-
ally started the system with the blocks at rest and with the
sum of the elastic forces in each block equal to zero. Other
initial conditions were considered and the results did not
change. We have also considered periodic boundary condi-
tions, and the results were the same~except for the few
events involving the boundaries of the chain!. Before we
start to compile statistics we let the system evolve until it
reaches a statistical stationary state. Here we fix the pulling
velocity and the characteristic velocity to the following val-
ues: n50.01 andn f51/6. It is beyond the scope of this
paper to do a detailed study on the effects of variations in the
pulling velocity and in the characteristic speed. Studies on
event distributions for varyingn f andn with fixed n l can be
found in @6#. We expect that the kind of transition we report

here will be observed for other values ofn f andn, and the
value ofn l where the transition occurs probably varies with
the characteristic and pulling velocities.

III. NUMERICAL RESULTS

To illustrate the different behaviors of the system when
n l is varied, we show in Fig. 2 projections of the block ve-
locities U̇ j onto the j2t plane. A black dot in the figure
means that thej block is moving at timet and a white one,
that it is at rest. We show three different cases with
n l51,3,10. It is clear that a transition occurs asn l is
changed. For smalln l , we see clusters of moving blocks,

FIG. 2. Projections of the block velocitiesU̇ j onto the j2t
plane for a 200 block system withn50.01, n f51/6, and ~a!
n l51, ~b! n l53, and~c! n l510.

FIG. 3. Statistical distributionr(m) of the moment of the events
~solid lines! and the distributionr(dt) of the time durations of the
events~dashed lines! for ~a! n l51, ~b! n l53, and~c! n l510. In all
cases,N5300, n50.01, andn f51/6.
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which involve only a small number of masses. Asn l is in-
creased, one finds clusters involving a small number of
blocks, as well as clusters involving a large number of
masses. These large ruptures appear~ shaped and travel
with the sound speedn l .

Now we investigate the distributions of moment and time
duration for different values ofn l . The moment of an earth-
quake is a measure of its size, and in dimensionless units it is
defined asm5( jdUj , wheredUj is the displacement of the
j th block and the sum is over the blocks displaced during the
event. The distributionr(m) is the number of events with
magnitudem divided by the number of blocksN in the chain
and by the total time of dynamical evolution. Forn l&2 we
find that r(m) is governed by an exponential function,
namely,r(m);exp(m/mc), wheremc is a characteristic mo-
ment. The result ofr(m) with n l51 is shown in Fig. 3~a! as
a solid line. We have also found that the characteristic mo-
ment decreases asn l becomes smaller, since whenn l50 the
blocks become disconnected and only events involving one
block are observed. For intermediate values ofn l
(2&n l&4) ones sees a regime forr(m) which is neither
power-law nor exponential behavior. This is shown in Fig.
3~b! where the solid line representsr(m) for n l53. For
largen l (n l*4) one sees the appearance of a partial power-
law distribution. This was the parameter region investigated
by Carlson and Langer@6#. Beyond the power-law cutoff one
sees a bump in the distributions, which increases in height as
n l becomes larger. We have found that the events that do not
belong to the scaling region become more and more frequent
as n l is increased. Thus, in the limit of very largen l the
power law tends to disappear. In Fig. 3~c! the solid line rep-
resentsr(m) for n l510.

For the distributions of time durationsdt of the events we
find qualitatively the same kind of behavior as found for the
distributions of moments. Forn l&2 we get an exponential
function,r(dt);exp(dt/dtc). This is shown in Fig. 3~a! for

n l51 as a dashed line. Again, we have found that the char-
acteristic time durationdtc decreases asn l gets smaller. For
n l*4 one sees partial power-law distributions, as shown in
Fig. 3~c! for n l510 as a dashed line. For intermediate values
of n l (2&n l&4) the distributions are neither exponential nor
power-law ones, as we show in Fig. 3~b! for n l53 ~dashed
line!.

We have also studied the statistical distributionsr(n) of
an event involvingn blocks. Again, the same kind of behav-
ior described above is seen, namely, exponential distribu-
tions for n l&2, partial power laws forn l*4, and a regime
without any scaling features for intermediate values ofn l .

IV. CONCLUSIONS

We have found exponential distributions for the sizes and
time durations of the events in the Burridge-Knopoff model
for earthquakes when the two kinds of springs have the same
~or approximately the same! elastic constants. In this situa-
tion the velocity n l and the sound velocity are equal~or
approximately equal! to one. For intermediate values ofn l ,
the distributions are neither exponential nor power law. For
large n l , partial power laws~namely, a scaling region of
limited size! are observed. Since in the experimental system
studied by Rubio and Galeano@4# the elastic gel is homoge-
neous, this implies that the exponential distributions they
found are consistent with our results for the case in which the
springs of the BK model have identical elastic constants. The
study here helps to understand why different fault distribu-
tions can be found in different locations of the earth’s crust.
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